Aligned Poly(ε-caprolactone) Nanofibers Guide the Orientation and Migration of Human Pluripotent Stem Cell-Derived Neurons, Astrocytes, and Oligodendrocyte Precursor Cells In Vitro.

نویسندگان

  • Anu Hyysalo
  • Mervi Ristola
  • Tiina Joki
  • Mari Honkanen
  • Minnamari Vippola
  • Susanna Narkilahti
چکیده

Stem cell transplantations for spinal cord injury (SCI) have been studied extensively for the past decade in order to replace the damaged tissue with human pluripotent stem cell (hPSC)-derived neural cells. Transplanted cells may, however, benefit from supporting and guiding structures or scaffolds in order to remain viable and integrate into the host tissue. Biomaterials can be used as supporting scaffolds, as they mimic the characteristics of the natural cellular environment. In this study, hPSC-derived neurons, astrocytes, and oligodendrocyte precursor cells (OPCs) are cultured on aligned poly(ε-caprolactone) nanofiber platforms, which guide cell orientation to resemble that of spinal cord in vivo. All cell types are shown to efficiently spread over the nanofiber platform and orient according to the fiber alignment. Human neurons and astrocytes require extracellular matrix molecule coating for the nanofibers, but OPCs grow on nanofibers without additional treatment. Furthermore, the nanofiber platform is combined with a 3D hydrogel scaffold with controlled thickness, and nanofiber-mediated orientation of hPSC-derived neurons is also demonstrated in a 3D environment. In this work, clinically relevant materials and substrates for nanofibers, fiber coatings, and hydrogel scaffolds are used and combined with cells suitable for developing functional cell grafts for SCI repair.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Proliferation Study of hiPS Cell-Derived Neuronal Progenitors on Poly-Caprolactone Scaffold

Introduction: The native inability of nervous system to regenerate, encourage researchers to consider neural tissue engineering as a potential treatment for spinal cord injuries. Considering the suitable characteristics of induced pluripotent stem cells (iPSCs) for tissue regeneration applications, in this study we investigated the adhesion, viability and proliferation of neural progenitors (de...

متن کامل

Trichostatin A Promotes the Conversion of Astrocytes to Oligodendrocyte Progenitors in a Defined Culture Medium

The generation of oligodendrocyte progenitor cells (OPCs) offers tremendous opportunities for cell replacement therapy in demyelinating diseases such as multiple sclerosis (MS) and spinal cord injury. Recently, the prospect of reprogramming terminally differentiated adult cells towards another mature somatic cell or progenitor cells without an intermediate pluripotent state has been of interest...

متن کامل

Trichostatin A Promotes the Conversion of Astrocytes to Oligodendrocyte Progenitors in a Defined Culture Medium

The generation of oligodendrocyte progenitor cells (OPCs) offers tremendous opportunities for cell replacement therapy in demyelinating diseases such as multiple sclerosis (MS) and spinal cord injury. Recently, the prospect of reprogramming terminally differentiated adult cells towards another mature somatic cell or progenitor cells without an intermediate pluripotent state has been of interest...

متن کامل

Preparation and Characterization of Aligned and Random Nanofibrous Nanocomposite Scaffolds of Poly (Vinyl Alcohol), Poly (e-Caprolactone) and Nanohydroxyapatite

Nanofibrous scaffolds produced by electrospinning have attracted much attention, recently. Aligned and random nanofibrous scaffolds of poly (vinyl alcohol) (PVA), poly (ε-caprolactone) (PCL) and nanohydroxyapatite  (nHA) were fabricated by electrospinning method in this study. The composite nanofibrous scaffolds were subjected to detailed analysis. Morphological investigations revealed that the...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Macromolecular bioscience

دوره 17 7  شماره 

صفحات  -

تاریخ انتشار 2017